• +7 (812) 982-52-03
  • info@techob.ru
Методы анализа

Средства измерений универсального назначения:

Фотометры, флюориметры и спектрофотометры

Абсолютные лидеры по числу используемых с их помощью методик анализа веществ в объектах окружающей среды (35 - 50 %) в настоящее время. Чувствительность метода составляет 10-7 М (10-2 мкг/мл или мг/л). В большинстве же случаев измеряют концентрации, равные 10-6-10-4 М (0,1-10 мкг/мл).
Спектрофотометрический метод считается средне чувствительным.При этом селективность спектрофотометрии также не является наилучшей и спектрофотометрический метод называют даже «спектрально неселективным».

Поэтому в спектрофотометрии селективность обеспечивают главным образом на стадии пробоподготовки - выбором реагента, наиболее селективно взаимодействующего с определяемым веществом, а также условиями проведения (варьированием рН, выбор растворителя, маскирование) и разделением уже окрашенных компонентов реакции. Воспроизводимость результатов спектрофотометрического определения также может характеризоваться как «средняя».

Этому способствует большое число случайных погрешностей, возникающих при приготовлении анализируемых растворов, за счет неполноты перевода определяемого компонента в фотометрируемое соединение и влияния посторонних компонентов, погрешностей контрольного опыта, наличием «кюветной» погрешности, погрешности установления нужной длины волны и др. Поэтому обычно относительная погрешность спектрофотометрических (фото- и колориметрических) методик составляют в среднем около 20 - 25 % (хотя приборная погрешность фотометра не превышает 1 - 2%). Тем не менее, эти приборы остаются лидерами по распространенности среди других универсальных приборов лабораторного анализа.

Люминесцентная спектроскопия (ЛМС)

Этот метод, по сравнению с фотометрией, привлекает аналитиков, прежде всего своей более высокой чувствительностью. Для большинства определяемых этим методом соединений пределы обнаружения <10-3 мкг/мл, т.е. ЛМС метод обычно в 10 - 100 раз более чувствителен, чем спектрофотометрия. Люминесцентная спектроскопия обладает большим диапазоном определяемых содержаний (до 4 порядков).

Наиболее распространенными отечественными люминесцентными приборами являются анализаторы серии "Флюорат-02 Панорама" , позволяющий с применением криогенных ("Крио-1" и "Крио-2") и высокоэффективных жидкостнохроматографических (ВЭЖХ-3 и ВЭЖХ-4) приставок и при наличии специальных сертифицированных Госстандартом наборов - методик достичь наиболее высоких результатов по чувствительности примерно для 40 "обычных" загрязняющих веществ и таких "супертоксикантов", как:

  • бенз(а)пирен - 10-7 мг/м3 (атмосферный воздух), 2,5·10-4 мг/м3 (промышленные выбросы), 2·10-6 мг/мл (питьевая и сточная вода),
  • бериллий и кобальт - 2-5·10-4 мг/м3 (атмосферный воздух), 1-5 10-4 мг/мл (питьевая и сточная вода),
  • мышьяк и селен 1 - 50·10-4 мг/мл.

Хроматографы

Вторым признанным лидером по числу реализуемых методик анализа веществ в объектах окружающей среды (20 - 40 %) в настоящее время являются приборы, основанные на хроматографии. Газовые (подвижная фаза - газ, неподвижная - твердый сорбент), газожидкостные (подвижная фаза - газ, неподвижная - тонкий слой жидкости на твердом носителе), жидкостные (подвижная фаза - жидкость, неподвижная фаза - твердый сорбент).

Среди отечественных хроматографических приборов больше всего отмечается газовых хроматографов (ряд серий и несколько десятков моделей). Наиболее известными в России являются газовые хроматографы серии "Кристалл", "ЦВЕТ". Наиболее распространенная модель из этой серии - лабораторный газовый хроматограф с пламенно-ионизационным детектором.

  • ДТП - детектор по теплопроводности (для анализа летучих органических и неорганических соединений), неселективен,
  • ДЭЗ (ЭЗД) - детектор электронного захвата. Для высокочувствительного анализа Cl-, P- и N- содержащих соединений, в том числе ядохимикатов, селективен к Cl и O содержащим соединениям,
  • ПФД -пламенно - фотометрический детектор, селективен к P- и S-содержащим соединениям,
  • ТИД - термоионный детектор, селективный к P- и N- содержащим соединениям,
  • ФИД - фотоионизационный детектор (для анализа ароматических и алифатических углеводородов, фенолов, пестицидов и др. органических веществ с потенциалом ионизации ниже 12 эВ).

В зависимости от детектора и определяемого вещества чувствительность этого хроматографа может составлять 10-10 - 10-4 % об. Отличается высокой точностью (± 1-7 %) и воспроизводимостью анализа. Режимы задаются и управляются микропроцессором, а обработка выходной информации осуществляется компьютером или с выводом на самописец для ручной обработки.Наиболее современные и полностью автоматизированные отечественные лабораторные хроматографы - "«Кристалл-2000М", "Кристалл-5000".

Детекторы газовых хроматографов

Детекторы обычно классифицируют на основании их селективности на универсальные, реагирующие на каждый компонент в подвижной фазе, селективные для определенной группы веществ, специфические для одного или ограниченного круга компонентов со сходными химическими характеристиками.

Пламенно-ионизационный детектор (ПИД). Проводимость газа -носителя, являющегося электрополяризатором, существенно возрастает благодаря ионам, образующимся при горении органических соединений в водородном пламени. Отклик ПИД пропорционален числу атомов углерода в молекуле, изменяется при переходе от одного класса органического соединений к другому незначительно.
Достоинства: простота в обращении, быстрый отклик, широкий линейный динамический диапазон, универсальность.
Недостатки: при проведении анализа определенного соединения в сложной матрице требуется более селективный детектор для уменьшения числа пиков мешающих компонентов. ПИД дает слабый отклик на вещества с малым содержанием углерода.

Электронно-захватный детектор (ЭЗД) используют для определения галогенсодержаищх соединений: хлорорганические пестициды, дибензафураны, тригалометаны и т.д.

Принцип действия этого детектора основан на уменьшении проводимости, вызываемом захватом электронов специфическим анализируемым веществом. В состав детектора входит радиоактивный источник малой интенсивности (фольга с 63Ni), который испускает электроны высокой энергии. Ионизация молекул газа - носителя (азота или смеси аргона и метана) приводит к образованию ионов и тепловых электронов, которые и формируют электрический ток в ионизационной камере. Когда в нее попадают молекулы галогенсодержащих органических соединений, тепловые электроны захватываются атомами галогена и проводимость уменьшается, что приводит к формированию сигнала детектора.
ЭЗД хорошо зарекомендовал себя при анализе питьевых и подземных вод. В случае поверхностных и сточных вод, содержащих множество органических соединений различных классов, требуется предварительная очистка вод.

Сочетание фотоионизационного детектора и детектора электролитической проводимости. Для анализа летучих ароматических и галогенсодержащих соединений рекомендуется последовательное соединение неразрушающего фотоионизационного детектора (ФИД) и детектора по электролитической проводимости (ЭПД).
В фотоионизационном детекторе вещества возбуждаются фотонами, излучаемыми УФ-лампой, электрический ток, формируемый заряженными частицами, измеряется с помощью двух электродов. Селективность зависти от используемой лампы. При детектировании галогенсодержащих компонентов посредством ЭПД входящее из колонок вещество восстанавливается водородом в никелевой реакционной трубке при 85 оС с образованием газообразного галогенводорода, который в свою очередь растворяется в н-пропаноле. Изменение проводимости растворителя преобразуется в сигнал детектора.

Атомно-эмиссионный детектор. АЭД позволяет различать галогенорганические соединения. В АЭД выходящее из колонки вещество атомизируется в высокоэнергетическом источнике, образовавшиеся возбужденные атомы излучают свет при возвращении в основное состояние. Излучаемый свет с различными длинами волн диспергируется в спектрометре и измеряется посредством фотодиодной матрицы. Каждый химический элемент имеет свой собственный типичный эмиссионный спектр, в котором эмиссионные линии обычно образуют кластеры с постоянным соотношением интенсивностей внутри кластера.Комбинированные методы дают дополняющую друг друга информацию, позволяющую произвести правильную идентификации веществ, которые не могут быть опознаны с помощью какого- либо одного метода.

Жидкостные хроматографы

Наиболее известны зарубежные ВЭЖХ системы Shimadzu, Perkin Elmer , отечественные микроколоночные лабораторные жидкостные хроматографы серии "МИЛЛИХРОМ", управляемые компьютером (5400 - 8400 $). Эти приборы позволяют с чувствительностью 10-9 - 10-11 г (10-3 - 10-5 г в пробе) определять пестициды, фенолы, тяжелые металлы, ПАУ, альдегиды, бензойную кислоту и другие органические вещества. Точность определения обычно составляет 1 - 3 %. Отечественные ионные хроматографы: "ЦВЕТ - 3006М", "ЦВЕТ-4000", "Стайер".Остановимся более подробно на принципе работы детекторов, используемых в хроматографии.

Детекторы для ВЭЖХ

 Высокоэффективная жидкостная хроматография (ВЭЖХ) используется для детектирования полярных нелетучих веществ, которые по каким-либо причинам не могут быть переведены в форму удобную для газовой хроматографии, даже в виде производных. К таким веществам, в частности, относят сульфоновые кислоты, водорастворимые красители и некоторые пестициды, например производные фенил - мочевины.

Детекторы:

УФ - детектор на диодной матрице. "Матрица" фотодиодов (их более двухсот) постоянно регистрирует сигналы в УФ- и видимой области спектра, обеспечивая таким образом запись УФ-В-спектров в режиме сканирования. Это позволяет непрерывно снимать при высокой чувствительности неискаженные спектры быстро проходящих через специальную ячейку компонентов. По сравнению с детектированием на одной длине волны, которое не дает информации о «чистоте» пика, возможности сравнения полных спектров диодной матрицы обеспечивают получение результата идентификации с гораздо большей степенью достоверности.

Флуоресцентный детектор. Большая популярность флуоресцентных детекторов объясняется очень высокой селективностью и чувствительностью, и тем фактором, что многие загрязнители окружающей среды флуоресцируют (например, полиароматические углеводороды).Электрохимический детектор используются для детектирования веществ, которые легко окисляются или восстанавливаются: фенолы, меркаптаны, амины, ароматические нитро- и галогенпроизводные, альдегиды кетоны, бензидины.

Атомно-абсорбционные и эмиссионные спектрометры

Атомно-абсорбционный спектральный анализ основан на селективном поглощении УФ- или видимого излучения атомами газа. Для перевода пробы в газообразное атомарное состояние применяются два вида устройств атомизации - пламенные и электротермические.В качестве источника излучения обычно применяют лампу с полым катодом из определяемого металла. Интервал длин волн спектральной линии, испускаемой источником сета, и линии поглощения того же самого элемента в пламени очень узок, поэтому поглощение других элементов практически не сказывается на результатах анализа.Атомно-абсорбционные элементные анализаторы относятся к современным селективным, высокопроизводительным и точным приборам, которые позволяют анализировать до 70 элементов в пробе с чувствительностью в интервале 10-4 - 10-9 % масс.

Недостатками этого вида анализа являются необходимость использования горючих газов, невозможность одновременного определения в пробе нескольких элементов.В настоящее время известно несколько модификаций средств измерений, основанных на принципе атомной абсорбции, выпускаемых отечественными фирмами:

В настоящее время метод атомной абсорбции считается одним из самых селективных, производительных, экспрессных, точных и одновременно сравнительно дешевых. Вариантом атомной спектроскопии является атомно-эмиссионная спектроскопия, отличающаяся от атомно-абсорбционной обратным способом регистрации - по оптическому спектру испускания возбужденных атомов.В этом варианте атомизатор и источник возбуждения совпадают, что несколько упрощает конструкцию. Наиболее перспективным считается вариант с индуктивно связанной плазмой (ИСП), не уступающей по чувствительности атомно-абсорбционным атомизаторам, но имеющий в 10 - 100 раз более широкий диапазон определяемых содержаний.

При этом атомно-эмиссионные анализаторы позволяют одновременно определять в пробе несколько элементов, но к сожалению, уступают атомно-абсорбционным спектрометрам по воспроизводимости и по селективности. Среди имеющихся на рынке наиболее известны приборы серии "ЭРИДАН-500". Будучи основанными на ИСП, эти эмиссионные спектрометры позволяют проводить элементный анализ практически любых веществ, в том числе чистых металлов и примесей в них, сплавов и сталей, порошковых (в том числе почв) и жидких проб (в том числе после поглощения из воздуха), продуктов питания, медицинских проб с высокой точностью (1- 20 %). Пределы обнаружения Cr, Al, Hg, As, Ni, Pb составляют 1 - 20 мкг/л.

Еще одним вариантом эмиссионной спектроскопии, сочетающим оба вышеприведенных принципа, является атомно-флуоресцентная спектроскопия. Аналитическим сигналом, как и в случае атомно-эмиссионной спектроскопии, служит интенсивность излучения в УФ- или видимой области спектра, испускаемого возбужденными атомами. Однако механизмы возникновения излучения в атомно-эмиссионной и атомно-флуоресцентной спектроскопии различны.В первом случае атомы излучают, будучи возбужденными, под действием тепловой энергии. В атомно-флуоресцентной спектроскопии возбуждение ионов происходит под воздействием внешнего источника излучения. Но поскольку, необходимым условием для возникновения атомно-флуоресцентного излучения является предварительное поглощение атомами кванта света подходящей энергии, то метод атомно-флуоресцентной спектроскопии, будучи по сути эмиссионным, имеет и много общего с атомно-абсорбционной спектроскопией.

Главное достоинство метода атомно-флуоресцентной спектроскопии - его высокая селективность (наивысшая среди методов оптической атомной спектроскопии), обусловленная исключительной простотой спектров атомной флуоресценции и, в связи с этим, отсутствием наложения спектральных линий различных элементов. К сожалению, такие приборы на российском рынке отсутствуют. Более 80 элементов (от Mg до V), правда с более низкой чувствительностью, позволяет определять в различных объектах еще одна группа эмиссионных приборов - рентгено-флуоресцентные спектрометры. Из всей серии методов рентгеновской спектроскопии (рентген-эмиссионный, рентген-абсорбционный и рентген-флуоресцентный) последний обладает наибольшей чувствительностью (10-5 - 100 %), а кроме того, позволяет изготавливать на его основе портативные приборы. Данные приборы незаменимы при полевом анализе (мониторинге) почв. Они позволяют в почвенных вытяжках и водах определять V, Bi, Mn, Ni, Pb, Cr, Zn в интервале концентраций 0,01 - 5,0 мг/л. Среди отечественных приборов, основанных на данном принципе, наиболее известна серия малогабаритных приборов "СПЕКТРОСКАН ". В российском Государственном реестре зарегистрировано также около 10 импортных средств, которые, мало чем отличаясь по главным характеристикам, тем не менее в несколько раз превосходят по стоимости приборы российского производства.

Приборы на основе электрохимических методов анализа

Вольтамперометрический метод анализа сегодня считается одним из наиболее перспективных среди электрохимических методов, благодаря его широким возможностям и хорошим эксплутационным характеристикам.Современная инверсионная вольтамперометрия, заменившая классическую полярографию, - высокочувствительный и экспрессный метод определения широкого круга неорганических и органических веществ, обладающих окислительно-восстановительными свойствами. Это один из наиболее универсальных методов определения следовых количеств веществ, который с успехом применяется для анализа природных гео- и биологических, а также медицинских, фармацевтических и иных объектов.

Вольтамперометрические анализаторы делают возможным одновременное определение нескольких компонентов (до 4 - 5) в одной пробе с довольно высокой чувствительностью 10-8 - 10-2 М (а инверсионная вольтамперометрия - до 10-10 - 10 -9 М).Наиболее перспективной в аналитической химии сегодня считается адсорбционная инверсионная вольтамперометрия, основанная на предварительном адсорбционном концентрировании определяемого элемента на поверхности электрода и последующей регистрации вольтамперограммы полученного продукта. Таким образом можно концентрировать многие органические вещества, а также ионы металлов в виде комплексов с органическими лигандами (особенно азот- и серусодержащими). При времени последовательного накопления 60 с и использовании дифференциального импульсного режима регистрации вольтамперограммы удается достичь пределов обнаружения на уровне 10-10 - 10-11 моль/л (10-8 - 10-9 г/л или 0,01 - 0,001 мкг/дм3).

Вольтамперометрический комплекс анализа металлов "ИВА-5 " предназначен для анализа 30 элементов (Cu, Zn, Pb, Cd, As, Co, Ni, Cr, и др. металлы), чувствительность 0,1 - 10-3 мкг/дм3.Вольтамперометрический анализатор с УФ-облучением проб - ТА-1М кроме ионов металлов позволяет определять целый ряд органических соединений. Для прибора характерны следующие особенности:

  • одновременный анализ в трех электрохимических ячейках,
  • малая навеска пробы (0,1 - 1,0 г),
  • низкая стоимость пробоподготовки и анализа.

Вольтамперометрический комплекс "АВС-1" с вращающимся дисковым стеклоуглеродным электродом позволяет проводить анализ токсичных элементов в водах, пищевых продуктах и различных материалах. Предел обнаружения без концентрирования пробы составляет: 0,1 мг/л для Pb, 0,5 мг/л для Cd, 1,0 мкг/л для Cu. Объем пробы - 20 мл, время получения вольтамперной кривой не более 3 мин. "АЖЭ - 12" предназначен для экспресс-анализа ионного состава сточных и оборотных вод. В анализаторе используется традиционный ртутный электрод. Контролируемые компоненты - Cu, Zn, Pb, Cd, In, Bi, Tl, Sb, As, Co, Ni, Cr, CN-, Cl-, S2-. Анализатор позволяет проводить измерения без пробоподготовки.

"Экотест-ВА" - портативный вольтамперометрический анализатор. Выполнен на современной микропроцессорной элементной базе и оснащен целым комплексом электродов - графитовым, стеклоуглеродным, микроэлектродами из благородных металлов и ртутным капающим электродом. Приборы этой серии предназначены для определения металлов Cu, Zn, Pb, Cd, As, Bi, Mn, Co, Ni, Cr, а также ацетальдегида, фурфурола, капролактама и др. веществ в пробах питьевой, природной, сточной воды, почве, а после соответствующей пробоподготовки - в пищевых продуктах и кормах.

Возможности многих аналитических методов анализа вод могут значительно расшириться при применении в процессе пробоподготовки проточно-инжекционных концентрирующих приставок, работающих в автоматическом режиме - например, типа БПИ-М и БПИ-Н. БПИ-М - предназначен для автоматизированной пробоподготовки, в его состав входят микроколонки с высокоэффективными сорбентами. Производительность блока - 30-60 анализов в день при полной автоматизации процесса. Применение блока позволяет повысить чувствительность в 20 раз за минуту концентрирования. Блок наиболее хорошо работает в сочетании с атомно-абсорбционным детектированием, а также с рентгено-флуоресцентным, атомно-абсорбционным и электрохимическими методами. БПИ-Н - предназначен для концентрирования ионов металлов на избирательных сорбентах одновременно в четырех микроколонках с ДЭТАТА - сорбентом или на 4 тонкослойных сорбционных ДЭТАТА - фильтрах. Возможно его использование с рентгено-флуоресцентным, атомно-абсорбционным, атомно-эмиссионным, электрохимическим методами. 

Атомная спектрометрия
Атомно-абсорбционая спектроскопия (ААС) - метод количественного анализа, основанный на свойствах атомов поглощать свет с определенной длиной волны (резонансное поглощение). В зависимости от способа получения поглощающего слоя атомов выделяют 4 основных типов техники атомизации
Люминесцентный метод анализа
Люминесцентный метод исследования, отличающийся высокой чувствительностью и быстротой, находят все более широкое применение в практике ветеринарно-санитарной экспертизы санитарно-эпидемиологического надзора.
МУ по определению веществ и смесей в воздухе рабочей зоны
Нормативные документы по определению веществ и смесей в воздухе спектрофотометрическим методом анализа
Оптико-эмиссионный спектральный анализ (ОЭСА)
Важнейшие достоинства ОЭСА – его быстрота (экспрессность) наряду с высокой точностью и низкими пределами обнаружения, низкая себестоимость, простота пробоподготовки
Рентгенофлуоресцентный анализ
Рентгенофлуоресцентный анализ обладает несомненным достоинством - является неразрушающим методом контроля, не разрушает и не деформирует пробу
Теоретические основы рН-метрии
Растворы представляют собой однородные смеси молекул растворенного вещества и растворителя. Под действием электростатических сил, возникающих между полярными молекулами растворителя и растворенного вещества
Тяжелые металлы
Тяжелые металлы - это элементы периодической системы с относительной молекулярной массой больше 40. Так сложилось, что термины "тяжелые металлы" и "токсичные металлы" стали синонимами. На сегодняшний день безоговорочно к числу токсичных относят кадмий, ртуть, свинец, сурьму.
Фотометрия
УВИ-спектрофотометры - приборы с широким диапазоном применений для анализа и идентификации различных веществ в химии, нефтехимии, фармакологии, экологии, пищевой промышленности, медицине, биологии и т.д.
Хемилюминесценция
На сегодняшний день для проведения исследований в клинической лаборатории необходимы все более и более чувствительные методы. Одним из таких является измерение хемилюминесценции биологических проб. Низкая интенсивность собственной хемилюминесценции и, как следствие невозможность регистрации…
Хроматография
Метод хроматографии был впервые применён русским учёным-ботаником Михаилом Семеновичем Цветом в 1900 году.